Is an alternative foundation of set theory possible?

Yang, Ruizhi

The 9th International Conference on Computability Theory and Foundations of Mathematics

Mar 21 - Mar 27, 2019

Wuhan University of Technology

- Set theory is widely accepted as the foundation of mathematics
- The structure of set-theoretical universe is denoted by (V, \in)
- The 1st order language of set theory is simply {∈}

Set-theoretic mereology

In contrast to set theory based on the membership relation \in , set-theoretic mereology is the theory of the parthood relation \subset between sets.

- Venn diagram
- $0, X \cup Y, X \cap Y, X \mid Y, X \triangle Y, |X| = n \text{ (for every natural number } n), \dots$

Question (Hamkins and Kikuchi 2016)

- Is parthood relation \in -complete in the sense that \in is definable in its reduct (V, \subset) ?
- Can set-theoretic mereology serve as a foundation of mathematics?

Set-theoretic mereology

Observation (Hamkins and Kikuchi 2016) (V, \subset) is not \in -complete

Theorem (Hamkins and Kikuchi 2016)

Set-theoretic mereology, namely the theory of (V, \subset) is precisely the theory of an atomic unbounded relatively complemented distributive lattice. This finitely axiomatizable theory is complete and decidable.

Set-theoretic mereology

Mathematical thinking is, and must remain, essentially creative.

Emil L. Post 1944

Gödel's Thesis

A decidable complete theory can not serve as a foundation of mathematics.

Definition

Let $\mathfrak A$ and $\mathfrak B$ be structures (not necessarily for the same first-order language). $\mathfrak A$ is a reduct of $\mathfrak B$ if its domain , relations and functions are definable in $\mathfrak B$.

Clearly, the theory of a reduct is interpretable in the theory of the original structure.

Question

- Is there any other reducts of (V, \in) can serve as a foundation?
- From a Platonistic view, (V, \in) might be a reduct of a finer structure of the universe of sets. What makes (V, \in) so special?

Question

- Is there any other reducts of (V, \in) can serve as a foundation?
- From a Platonistic view, (V, \in) might be a reduct of a finer structure of the universe of sets. What makes (V, \in) so special?

Observation (Hamkins and Kikuchi 2016)

 $(V, \subset, \{x\})$ is \in -complete

$$a \in b \Leftrightarrow \{a\} \subset b$$

Definition

- $a \subset^* b$ iff $a \setminus b$ is finite
- $|a| = \infty$ iff there is a surjection from a proper subset of a to a itself

Observation

The theory of (V, \subset, \subset^*) is mutually interpretable with the theory of $(V, \subset, |x| = \infty)$. The latter has a complete decidable theory.

We add the the unary union \bigcup or the unary intersection \bigcap instead.

Observation

Both (V, \subset, \bigcup) and (V, \subset, \bigcap) are \in -complete

$$y = \{x\} \Leftrightarrow \bigcup y = x \land |y| = 1$$

 $\Leftrightarrow \bigcap y = x \land |y| = 1$

Observation

$$(V,\cap,\cap),$$
 $(V,\cup,\bigcup),$ and (V,\cap,\bigcup) are all \in -complete

$$x \subset y \Leftrightarrow \exists z (\cap z = x \land \bigcup z = y)$$

The power set operation *P* is "coarser" than the unary union

Observation

$$(V, \subset, P)$$
 is \in -comlete

We can define $y = \{x\}$ as follow: Define z to be the \subset -least such that

$$\forall w \left((w \subset x \land w \neq x) \to P(w) \subset z \right)$$

Then
$$z = P(x) \setminus \{x\}$$
, so $y = P(x) \setminus z$

Question

What about the unary intersection \bigcap , the unary union \bigcup , or the power set operation P on themselves?

The unary intersection structure

The reduct (V, \cap) is just a proper-class-branching "tree" of height \aleph_0 if (V, \in) is well-founded

Theorem (Hamkins and Y. 2017)

There is a computable complete axiomatization of the theory of (V, \bigcup) .

There are exactly two covers of \emptyset :

$$\bigcup\emptyset=\emptyset$$

$$\bigcup\{\emptyset\}=\emptyset$$

Note that \emptyset is the only finite set x such that $\bigcup x = x$.

There are exactly two covers of $\{\emptyset\}$:

$$\bigcup \{\{\emptyset\}\} = \{\emptyset\}$$
$$\bigcup \{\emptyset, \{\emptyset\}\} = \{\emptyset\}$$

Note that it is the case for any singleton $\{a\}$.

There are exactly two covers of $\{a\}$:

$$\bigcup \{\{a\}\} = \{a\}$$

$$\bigcup \{\emptyset, \{a\}\} = \{a\}$$

Note that it is the case for any singleton $\{a\}$.

How many covers are there for a set of size two $\{a, b\}$?

```
\{\{a,b\}\}; \{\emptyset,\{a,b\}\}; \{\{a\},\{a,b\}\}; \{\{b\},\{a,b\}\}; \{\{a\},\{b\}\}; \{\emptyset,\{a\},\{a,b\}\}; \{\emptyset,\{a\},\{b\}\}; \{\{a\},\{b\},\{a,b\}\}; \{\emptyset,\{a\},\{b\},\{a,b\}\}; \{\emptyset,\{a\},\{b\},\{a,b\}\}.
```

How many covers are there for a set of size three $\{a, b, c\}$?

There are 218 covers of a set containing three elements

- The number of covers of 4 is 64594.
- The number of covers of 5 is 4294642034.

.

How many covers are there for a set of size three $\{a, b, c\}$? There are 218 covers of a set containing three elements!

- The number of covers of 4 is 64594.
- The number of covers of 5 is 4294642034.

.

How many covers are there for a set of size three $\{a, b, c\}$? There are 218 covers of a set containing three elements!

- The number of covers of 4 is 64594.
- The number of covers of 5 is 4294642034.

.

Fact

There is a recursive function C, given a finite set

 $A = \{a_1, \dots a_n\}$, there are exactly C(n) many covers of A.

$$C(n) = 2^{2^n} - \Big(\sum_{i=0}^{n-1} \binom{n}{i} \cdot C(i)\Big).$$

$$C(n) = \sum_{i=0}^{n} (-1)^{n-i} \cdot {n \choose i} \cdot 2^{2^{i}}.$$

Fact

There is a recursive binary function c such that, given a finite set A of size n, there are c(n, m) many covers of A of size m.

$$c(n,m) = \binom{2^n}{m} - \Big(\sum_{i=0}^{n-1} \binom{n}{i} \cdot c(i,m)\Big).$$

$$c(n,m) = \sum_{i=0}^{n} (-1)^{n-i} \cdot \binom{n}{i} \cdot \binom{2^{i}}{m}.$$

The infinite case

Let κ be infinite, $\lambda \geq 2$. There are $C(\kappa) = 2^{2^{\kappa}}$ many covers of κ , among them, there are $c(\kappa, \lambda) = [2^{\kappa}]^{\lambda}$ many covers of cardinality λ .

Some definable sets in (V, \bigcup) :

$$\blacksquare x = \emptyset \Leftrightarrow \bigcup x = x \land \exists^{=2}y \bigcup y = x$$

$$\blacksquare x = \{\emptyset\} \Leftrightarrow \bigcup x = \emptyset \land x \neq \emptyset$$

$$\blacksquare x = \{\{\emptyset\}\} \Leftrightarrow \bigcup x = \{\emptyset\} \land \exists^{-2}y \bigcup y = x$$

Observation

 $rank(\bigcup x) \le rank x$ for all x. In particular,

- \blacksquare if rank $x = \alpha + 1$, then rank $(\bigcup x) = \alpha$;
- \blacksquare else if rank $x = \alpha$ is limit, then rank $(\bigcup x) = \alpha$.

Observation

For each $1 \le k < \omega$ there are infinitely many sets $x \in V_{\omega+1}$ such that x have exactly k many \bigcup -successors in $V_{\omega+1}$ (it follows $\bigcup^k x = x$) constituting a k-loop.

Example

Axioms of union

Definition

D0
$$|x| = 0 \leftrightarrow \bigcup x = x \land \exists^{=2}y \bigcup y = x$$

Dn $|x| = n \leftrightarrow \bigcup x \neq x \land \exists^{=C(n)}y \bigcup y = x$ (for $n \ge 1$)
E1 $|x| \ge 0 \leftrightarrow x = x$
En $|x| \ge n \leftrightarrow \exists^{\ge C(n)}y \bigcup y = x \land y \ne x$ (for $n \ge 1$)

Note: $|x| = 0 \lor ... \lor |x| = n - 1 \lor |x| \ge n$ is not valid

Axioms of union

U1

$$\exists^{=1}x |x| = 0$$

U2 For $n, k \in \omega$,

$$\exists^{\geq n} x \ (x = \bigcup^k x \land \bigwedge_{1 \leq l \leq k} x \neq \bigcup^l x)$$

U3 For
$$n \ge 1$$
,
$$\forall x \left(\bigvee_{i=0}^{n-1} |x| = i \lor |x| \ge n \right)$$

Axioms of union

 \bigcup 4 For $n, k \ge 1$.

$$\forall x (|x| = n \to x \neq \bigcup^k x)$$

U5 For $n, m \in \omega$,

$$\forall x (|x| \ge n \to \exists^{\ge c(n,m)} y (\bigcup y = x \land |y| = m))$$

U6

$$\forall x \exists^{=1} y (\bigcup y = x \land |y| = 1)$$

Quantifier elimination

Let $\mathcal{L}_{U}^{*} = \{\bigcup, \emptyset, |x| = n, |x| \ge n\}$. Let Λ_{U}^{*} be constituted by U1 - U6, Dn s, En s, and $|\emptyset| = 0$

Lemma

For every \mathcal{L}_U^* -formula θ , there is a quantifier-free \mathcal{L}_U^* -formula ψ such that

$$\Lambda_U^* \vdash \theta \leftrightarrow \psi$$

Corollary

 $\Lambda_{U} = U1 - U6$ is complete

Quantifier elimination

Example

 φ is

$$\bigcup x = t \land x \neq s_0 \land \ldots \land x \neq s_m \land |x| = n,$$

where t, s_0, \ldots, s_m are terms do not contain x

We call s_i a competitor if $\bigcup s_i = t = \bigcup x$, a competitor is a threat if $|s_i| = n$. Then $\exists x \varphi$ is equivalent to

$$\bigvee_{k=\lceil \log n \rceil}^{k'} \left| \left\{ s_i \mid \bigcup s_i = t \land |s_i| = n \right\} \right| < c(k, n) \land |t| \ge k.$$

Quantifier elimination

Example

 φ is

$$\bigcup x = t \wedge x \neq s_0 \wedge \ldots \wedge x \neq s_m \wedge |x| = n,$$

where t, s_0, \ldots, s_m are terms do not contain xWe call s_i a competitor if $\bigcup s_i = t = \bigcup x$, a competitor is a threat if $|s_i| = n$. Then $\exists x \varphi$ is equivalent to

$$\bigvee_{k=\lceil \log n \rceil}^{\mathcal{K}} \left| \left\{ s_i \mid \bigcup s_i = t \land |s_i| = n \right\} \right| < c(k, n) \land |t| \ge k.$$

More reducts

Theorem

 (V, \cap) has a decidable theory:

$$\exists^{-1}x \cap x = x$$

12
$$\forall x (\bigcap^k x = x \to \bigcap x = x) \text{ (for } k > 1)$$

13
$$\forall x \exists^{\geq n} y \cap y = x \text{ (for } n < \omega)$$

More reducts

Theorem

 (V, \bigcup, P) has a decidable theory: U1 - U6 together with

P1
$$\forall x (|Px| \ngeq n \rightarrow \bigvee_{m \le |\log n|} |Px| = 2^m)$$
 (for $n < \omega$)

P2
$$\forall x (|x| = n \leftrightarrow |Px| = 2^n)$$
 (for $n < \omega$)

P3
$$\forall x \cup Px = x$$
;

P4
$$\forall x (P^l x \neq \bigcup^k x)$$
 (for $l > 1$ and $k < \omega$)

Dichotomy among reducts of (V, \in)

∈-complete:

$$(V, \subset, \{x\}), (V, \subset, \bigcup), (V, \subset, \bigcap), (V, \bigcup, \bigcap), (V, \subset, P)$$
 etc.

completely axiomatizable:

$$(V,\subset)$$
, (V,\subset,\subset^*) , (V,\bigcup) , (V,\bigcap) , (V,\bigcup,P) , etc.

Dichotomy among reducts of (V, \in)

∈-complete:

$$(V, \subset, \{x\}), (V, \subset, \bigcup), (V, \subset, \cap), (V, \bigcup, \cap), (V, \subset, P)$$
 etc.

completely axiomatizable:

$$(V, \subset)$$
, (V, \subset, \subset^*) , (V, \cup) , (V, \cap) , (V, \cup, P) , etc.

Further Observation

Definition

- A stratification of a set theory formula φ is a function σ on the variables occurring in φ to the natural numbers such that
 - if x = y occurs in φ , then $\sigma(x) = \sigma(y)$
 - if $x \in y$ occurs in φ , then $\sigma(x) + 1 = \sigma(y)$
- A formula φ is stratifiable if there is a stratification such that all free variables in φ have the same σ value.

Further Observation

Observation

- $X \subset Y$, $X \cup Y$, $X \cap Y$, $X \setminus Y$, $X \triangle Y$, $|X| = \infty$, $X \sim Y$ can be defined by a stratifiable formula
- while, $\bigcup X$, $\bigcap X$, P(X) are not stratifiable.

Further Observation

Observation (McKenzie)

If relations and functions in reduct $(V, R_1, ..., R_n, f_1, ..., f_m)$ are all stratifiable, then it is not \in -complete

Question (McKenzie and Y.)

Must every stratifiable $(V, R_1, \dots, R_n, f_1, \dots, f_m)$ admits a complete axiomatization? For instance, (V, \subset, \sim) ?

Thank you!